
Pergamon 
J. ApI~ Maths Mech~ Vol. 60, No. 5, pp. 839--843, 1996 

Copyright © 1997 Elsevier Science Ltd 
Printed in Great Britain. All fights reserved 

PII: S0021--8928(96)00104.9 0021-8928/96 $24.00+0.00 

SECOND-ORDER EFFECTS IN THE CRITERIA FOR THE 
START OF CRACKS IN IDEALLY BRITTLE 

HYPERELASTIC ELASTOMERSt 

B. A. Z H U K O V  

Volgorad 

(Received 9 June 1995) 

The formulation and ~olution of a plane problem in the theory of elasticity for a hyperelastic medium containing a crack are 
given. Expressions are obtained for the energy integral in order to investigate the conditions for the start of a crack. Special 
cases in the form of cleavage and transverse shear cracks are considered. Second-order effects do not show up in the ease of 
cleavage cracks, but in the ease of transverse shear cracks they show up in the form of a deviation of the crack from the initial 
direction, which agrees with observations. © 1997 Elsevier Science Ltd. All fights reserved. 

1. DESCRIPTION OF THE STRESS AND STRAIN FIELDS INCLUDING 
S E C O N D - O R D E R  EFFECTS 

An elastomer is an ideally brittle [1], hyperelastic [2] incompressible medium. A representation of the 
displacement vector for plane strain in the form 

2 
$ $ O $ $ 

U = R - r  = V F t + ( V F . V V F  + V H )  t (1.1) 
2 

has been proposed,~ where r and R are the "plane parts" of the radius vectors of the points in the initial 
and actual configurations, t is a small parameter, F and H are biharmonic functions of the material 
coordinates (x,y) for which the Cartesian coordinates of the points in the initial configuration are taken, 
and 

and ~r 

are the Hamiltonian operator and the simplex operator in the basis of the initial configuration. Expression 
(1.1) satisfies the incompressibility condition up to terms proportional to t 3. 

In the case of a strain energy potential in the Mooney-Rivlin form, the Cauchy stress tensor, the 
expression for the normal to the strained surface and the force boundary condition take the form 

t 2 ,,., ~ ...... 
S=P'IttV~7F+~7~7F+qI(E+kk)I+--~[VVH+ H+~TF.(V~7VF+VVVF)+ 

+2+V F. (~7 + F + VV F) + q2E +(q2 + (1- ~)+~7 F..(V V V + +~7 F))kk]} (1.2) 
" '  

N = n + t B ,  f= ,n .S+tB-s ,  B = n n .  F . n - V V F . n  (1.3) 

where s is the linear part of S, which is proportional to t, f is the density of the external surface forces, 
n is a normal to the surface in the initial configuration, ql and q2 are functions which satisfy the system 

Vql = - V % ~  ~'V 
Vq2=-[V~7F"(VV~TF+~7~7~7F)+~7F • AF+2 F.~7AF+~7AH] 

E -- ii + j] is the unit tensor and A is the Laplace operator. 

(1.4) 
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The Piola stress tensor can be represented in the form 

D = S -  Bt2[~r V F.(V~7 F + ~TV F)+ ~7~7 Fql ] 

The differential operators in the above relations act solely on the first factor to the right which is not 
an operator, and this condition is observed henceforth. 

Expressions (1.1)-(1.4) constitute the formulation of the problem of investigating second-order effects 
in the plane strain of an incompressible material at regular points. 

2. E X P R E S S I O N  FOR THE ENERGY FLUX AT THE CRACK TIP 

The energy flux vector at a singular point [3] 

G = Fli + F~j (2.1) 

F t = l im~n.[WE-D.Vur] . i ta rg ,  k = l , 2  (i t =i,  i 2 = j )  (2.2) 
k~07  

is used as one of the characteristic singular points which are the crack tips (here, the expressions for 
Fk are written for the condition of plane strain in problems of the statics of ideally brittle hyperelastic 
elastomers when there are no mass forces and thermal fluxes). Here 7 is a simple piecewise-smooth 
contour in the XOY plane in the initial configuration, the ends of which lie on the opposite edges of 
the cut, n is the unit vector of the normal to the contour 7 and which is outside the domain containing 
the cut tip, k is the length of the contour 7 and W is the strain energy potential. 

The integrals in (2.2) are independent of the contour 7 and depend solely on the position of the points 
that are linked by 7. The necessary and sufficient condition for this property to be satisfied is that the 
divergence of the part of the integrand enclosed in the square brackets should vanish at regular points, 
i.e. 

~ . [ W E - D . V u r ] = 0  

In the case of a linear cut, the edges of which are force-free, the integral is also independent of the 
position of the ends of the contour on the cut edges. We denote these invariant integrals by Jk. 

The vector (2.1) is used as the criterion for the start of a singular point. According to the energy 
theory of curvilinear cracks [3] in materials with homogeneous and isotropic mechanical properties, 
the crack tip starts to move in the direction of the vector (2.1) if its modulus reaches a certain 
experimentally determined value. 

Expressions for Jk, including second-order effects, are obtained in the form 

Jk = IimBj'n'{[~7~F"(~TF+~7~TF)E-2(~7~YF+~Y~7F+q,E)VVF]T+'~" t2 
;t.~0 "t 

+{t~ZF. VF..(V~TF+~TVF)+tVVH+VVH)..VVF]E- 
- [ V F . ( ~ T V V F + V V V F ) + V V H + V V H - E q l  ~ r ~ F + q 2 E ] . V V F _  

, o  , . . . . . .  , , ,  t _ '  -(V~7F+~7~TF+qIE).(VVF.VVF+VF.VVVF+ H)} }.ikd~ 
2 

(2.3) 

Here, il = 1, i 2 = j .  
The invariance of the integrals is verified by direct calculation of the divergence of the expression in 

the braces. It is identically equal to zero (taking account of equilibrium equations (1.4)). 

3. R E P R E S E N T A T I O N  O F  B I H A R M O N I C  F U N C T I O N S  I N  T E R M S  O F  
A N A L Y T I C  F U N C T I O N S  

The functions F, ql, H and q2 are represented in terms of analytic functions using Goursat formulae 
and the solutions of the equilibrium equations (1.4) 
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F=~f  +~+tp+~,  q l = 4 i ( f ' - f ' - i c ) ,  H = z ¥ + z ~ + X + X  

q2 =4i(~l ' -v '- icl)-sI(Ef"+v")(zf ' ---;+~")+(zY+~'+ f ) f "+(~f '+tp '+J)J"]  (3.1) 

The Cauchy stress tensor S is henceforth represented in the form of the sum of three terms S = s 
+ S' + S", where s is the stress tensor in the linear theory of elasticity, S' is the tensor which describes 
the second-order effects and the generated function F, and S" is a tensor which describes the second- 
order effects and the generated function H. 

4. S O L U T I O N  OF C R A C K  P R O B L E M S  W I T H I N  T H E  F R A M E W O R K  OF 
S E C O N D - O R D E R  E F F E C T S  

The problem ot a crack which is subject at infinity to normal loads of intensityp and tangential intensity 
x is considered. 

We introduce the new variables (u, v), which are elliptic coordinates z = lch (~), ~ = u + iv, where 
I is half the length of the cut. 

A linear equation is obtained by putting 

(4.1) 

in the form 

The tensor 

_p {A_ii s + A+jj + iC+ (ij + ji)} + ~ {(4B_ + 26"+)ii + 2C+jj - i2A+ (ij + ji)} 
2 

sh(~:l: ~) (ch~-ch~>(sh3 ~+sh3 ~) 
A±=B++C_,  B±= s h ~ s h ~ '  C+= 2sh3~sh3 ~ 

(4.2) 

S' = __l_ { [ 2 0 0  + D K  + K-D - 2 E ( O  + O)]ii + [ 2 0 0  - DL + L'D + 2 E ( O  + O)]jj + 
321~ 

+i[ DM - DM - 2E(O- O)](ij + ji)} 

r = r +  L = - r + v _  + , M=-r  sh sh 3- 

V ch~ c h ~ - c h ~ _ 2 x  ch ~ 
T=3V+(ch~-ch~) ,  E = I + ] ,  ! =  + s- '~" O=V+ sh3~ sh~ 

D = V+(sh~-sh~)+  V ( c h ~ -  ch~) ch-~.+ ~ , V+ = "c+ip 
sh~ 

(4.3) 

is generated by functions (4.1). 
We will denote the unit vectors into which the vectors I andj  transform according to (1.3) by NI and 

N2. On substituting (4.1) into (3.1) and the result of this into (1.3) and then allowing u to tend to infinity, 
we obtain 

N, = i - ~ - ~  j, N2 = j + ~ - ~ i  

We now assume that the load is as follows (this does not affect the linear solution) 

Nt • S =pNi + '~N2, N 2 • S = p N 2 +  xN l 

Then, using (1.3), (4.2) and (4.3), we obtain the bo, ":dary conditions for S" at infinity 
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In the cut 

2 
S x  x "C , ,  3 x  2 

'" =~-g,  Syy =---,4$t SxY'" = 0 

p s in2v .  
N2 J + 41.1. s in 2 v 

and, from N 2 • S = 0 using (1.3), (4.2) and (4.3), we obtain 

'17 2 COS 2 V 
S" = ___PX S~'~" = 

)'x .. 2 g '  41.t sin 2 v 

The boundary conditions can be satisfied by putting 

W, = "~2i ( c h 2 {  ch{'~+ Xp (I ch{'~ 

. 't:'i (ch~sh2~ ,.,(,+ ch~]~ 'tp (ch~ 2(1 ch~ 

Thus, we obtain 

(4.4) 

+ i-fffffsc_+,,v+2R)+-- - _ j j  

)(sh2  R_ch'  
N=(ch~-ch{ ~q ch'~)' -shS{+s-'fi'~ -/J÷ 

Fix2 N +  xp ] 
+[i-"~'g .~..g (B+ + 6 " _ - 2 ) ( i j +  ji) (4.5) 

The sum of expressions (4.2), (4.3) and (4.5) is the Cauchy stress tensor which describes the state of 
stress. 

Asymptotic representations of hyperbolic function are used to evaluate the integrals (2.3). Substitution 
of these representations into (4.1) and (4.4) and of the latter into (3.1) and (2.3) leads to the asymptotic 
expansions of the integrands. The singular part of these expressions in both integrals is obtained in the 
form 

Q(r, Ix) = r-J2A(ct)+ r- lB(o0+ r-Y2C(ct) 

In order for the integrals to be finite and independent of r, it is necessary that the integrals of the 
first and third terms with respect to cz should vanish in the interval [-n, 7t], which can be verified by 
direct calculation. 

The integrals of the second terms give the expressions 

The additional terms, compared with the linear solution, that is, the second terms in square brackets, 
can reach an appreciable magnitude in the case of low-modulus materials. 

The energy flux vector is represented in the form G = Jli + JzJ. According to the energy theory [3], 
a crack starts to move if I G I reaches a certain value, which is constant for a given material, at an angle 
® = arctg (JZ/Jl) to the X axis. This value is determined experimentally. 
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The solution for a normal cleavage crack is obtained as a special case when ~ = 0. In describing the 
stressed state, there is no S" term in the Cauchy tensor and the first-order and second-order effects 
are solely determined by the complex potentials of the linear theory. The energy flux vector is obtained 
in the form G = rdp2(4p.)-li, that is, it is identical with the results obtained using the linear theory, and 
second-order effects do not manifest themselves in the criterion for the start of a crack. 

The solution for a transverse shear crack is obtained whenp = 0 and is determined by the following 
complex potentials and the energy flux vectors 

8-~[  ch2~] ' ~2i ( c h 2 ~  c h ~  l, sh~, ~0'=- sh~+ 
J' ¥ : 

The solution differs from the linear solution and second-order effects manifest themselves in the fact 
that the crack starts at an angle O = arctg (2x/p.) to the cut. 
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